#### [11:00-11:05] Logistics for midterm #1

The exam is open book, open note, open laptop/tablet, but no networking is allowed.

If you want the ability to use MATLAB on the exam, ensure that you have a working local version installed, since you will not be able to use the web version.

The exam will cover material up to and including the 9/30 lecture. The exam will cover topics relating to the lectures, homework assignments, and mini project.

### [11:05-11:45] Sampling and aliasing

When sampling, any frequencies beyond  $\left(-\frac{f_s}{2}, \frac{f_s}{2}\right)$  will alias down to a frequency within this range.

A sinusoidal signal  $x(t) = A\cos(2\pi f_0 t + \phi)$  becomes  $x[n] = \cos\left(2\pi \frac{f_0}{f_s}n\right)$  when sampled. The samples y[n] of  $y(t) = A\cos(2\pi (f_0 + \ell f_s)t + \phi)$  are identical to the samples of x[n] for any integer  $\ell$ .

The scenario where  $f_0 < f_s/2$  is called oversampling.

The scenario where  $f_0 > f_2/2$  is called undersampling.

## Example (undersampling):

$$x(t)=\cos(2\pi f_0 t)$$
 ,  $f_0=100$  Hz,  $f_s=80$  Hz 
$$\widehat{\omega}_0=2\pi\frac{f_0}{f_s}=2.5\pi$$

Since  $x[n] = \cos(2.5\pi n) = \cos(0.5\pi n + 2\pi n) = \cos(0.5\pi n)$  the samples of  $\cos(2\pi \ 100 \ t)$  are the same as the samples of  $\cos(2\pi \ 20 \ t)$  when sampled at  $f_s = 80$  Hz (aliasing).

However, applying a standard discrete-to continuous reconstruction procedure to x[n] will result in a signal that resembles  $\cos(2\pi\ 20\ t)$ , since  $-\frac{f_s}{2} < 20\ \text{Hz} + \ell f_s < \frac{f_s}{2}$  is only satisfied when  $\ell = 0$ .

To mitigate the effect of sampling, we can apply a low-pass analog filter (e.g. RC filter) to attenuate any frequencies above  $f_s/2$ .

### Example (folding by undersampling)

$$x(t) = \cos(2\pi f_0 t)$$
,  $f_0 = 100$  Hz,  $f_s = 125$  Hz 
$$x[n] = \cos\left(2\pi \frac{f_0}{f_s}n\right) = \cos(1.6\pi n) = \cos(1.6\pi n - 2\pi n) = \cos(-0.4\pi n)$$

#### [11:40-] Reconstruction (discrete-to-continuous conversion)

The general form of interpolation is a mixed (continuous and discrete) convolution:

$$\tilde{y}(t) = \sum_{-\infty}^{\infty} y[n] p(t - T_{s}n)$$

Input: discrete-time sequence  $y[n] = y(nT_s)$ 

Output: continuous-time signal that is an approximation of y(t)

The pulse function p(t) is chosen to have unit amplitude and/or area.

Rectangular pulse with height 1 and width  $T_s$ .

Linear interpolation: equivalent to  $p(t) = \underline{\text{triangular pulse}}$  with height 1 and width  $2T_s$ .

To avoid interfering with other samples,  $p(t \pm \ell T_s) = 0$  for all non-zero integers  $\ell \neq 0$ .

Sinc pulse:  $p(t) = \text{sin}(t/T_s) = \frac{\sin(\pi t/T_s)}{\pi t/T_s}$ . The sinc pulse has infinite overlap with other sinc pulses, but the zero crossings occur at other sampling times to avoid interference.



# Reconstruction with a square pulse Sampling near the Nyquist rate

- Captures the correct number of zero crossings
- Amplitude is reduced
- Shape is not captured



## [11:10] Power consumption

In a circuit, the dynamic power can be modeled by

$$P = ACV^2 f$$

Where f is the operating frequency of the circuit.

Some data converters have power  $\propto f^2$ . Additionally, many signal processing algorithms require complexity between n and  $n^2$  in the number of samples n. Thus, oversampling can be very expensive from a power perspective.

#### Doc cam



| Power Consuppion in a Circuit         |
|---------------------------------------|
|                                       |
| Continuous PECAC Vad f                |
| Tibe                                  |
| Circuits Lacturity factor             |
| Discrete-Time Algorithms              |
| Fast Fourier Transform (FFT)          |
| for a block of N samples              |
| NogaN for Nis a power of two          |
| Some AID converters i Pouer or Fights |
| Some AID converters! Power of The     |
| Overall, the power tould flooring     |
| increase by fs to fs                  |
| for increasing fs                     |
|                                       |